WEEK 4 PROBLEMS Math 6014A

1. Let $k \ge 2$ be an integer. Prove that if a graph G is k-connected, and v_1, v_2, \ldots, v_k are vertices of G, then there is a cycle in G that contains all $v_i, 1 \le i \le k$. *Hint.* Use induction to get a cycle through $v_1, v_2, \ldots, v_{k-1}$.

2. Prove that if G is 3-regular, then the vertex-connectivity equals the edge-connectivity.

3. Let $k \ge 2$ be an integer. Prove that every connected k-regular bipartite multigraph on at least three vertices is 2-connected.

4. Let k > 1 be an integer. Prove that every k-connected graph on at least 2k vertices has a cycle of length at least 2k.

5. Let G be a 2-connected graph, and let s, t be distinct vertices of G. Prove that the vertices of G can be numbered v_1, v_2, \ldots, v_n in such a way that $v_1 = s, v_n = t$ and for all $i = 2, 3, \ldots, n$ the vertex v_i has a neighbor in $\{v_1, v_2, \ldots, v_{i-1}\}$ and the vertex v_{i-1} has a neighbor in $\{v_i, v_{i+1}, \ldots, v_n\}$. (This is called an *s*-t numbering.)

6. Let G be a 2-connected graph on at least four vertices and let e be an edge of G. Prove that either $G \setminus e$ or G/e is 2-connected.