WEEK 5 PROBLEMS Math 6014A

1. Prove that every regular bipartite multigraph has a perfect matching.

2. Two people play a game on a graph G by alternately selecting distinct vertices v_0, v_1, \ldots such that, for i > 0, v_i is adjacent to v_{i-1} . The last player able to select a vertex wins. Show that the first player has a winning strategy if and only if G has no perfect matching. *Hint.* Augmenting paths.

3. A vertex cover of a graph G is a set of vertices A such that every edge has at least one end in A. Prove that in a bipartite graph the size of a maximum matching is equal to the size of a minimum vertex cover. Prove that this does not hold for all graphs.

4. (Petersen's theorem) Prove that every 2-edge-connected 3-regular graph has a perfect matching. *Hint.* Use Tutte's theorem.

5. Let A_1, A_2, \ldots, A_m be subsets of a set S. A system of distinct representatives for the family (A_1, A_2, \ldots, A_m) is a subset $\{a_1, a_2, \ldots, a_m\}$ of S such that $a_i \in A_i$ for $i = 1, 2, \ldots, m$, and $a_i \neq a_j$ for $i \neq j$. Show that (A_1, A_2, \ldots, A_m) has a system of distinct representatives if and only if

 $\left|\bigcup_{i\in J} A_i\right| \ge |J|$ for all subsets J of $\{1, 2, \dots, m\}$.

6. Let G be a bipartite graph with bipartition (A, B) such that

(*) $|N(S)| \ge |S|$ for every $S \subseteq A$.

Assume furthermore that E(G) is minimal subject to (*); that is, $G \setminus e$ does not satisfy (*) for every edge $e \in E(G)$. Prove, without using Hall's theorem, that E(G) is a matching of size |A|. Deduce Hall's theorem.