WEEK 6 PROBLEMS Math 6014A

1. Let $n \ge 1$ be an integer. Prove that the maximum number of subsets of $\{1, 2, ..., n\}$ such that none is a subset of another is $\binom{n}{\lfloor n/2 \rfloor}$. (This is called Sperner's lemma.) *Hint.* Find a cover by $\binom{n}{\lfloor n/2 \rfloor}$ chains.

2. An $r \times s$ Latin rectangle based on 1, 2, ..., n is an $r \times s$ matrix $A = (a_{ij})$ such that each entry is one of the integers 1, 2, ..., n and each integer occurs in each row and column at most once. Prove that every $r \times n$ Latin rectangle A can be extended to an $n \times n$ Latin square. [Hint. Assume that r < n and extend A to an $(r + 1) \times n$ Latin rectangle. Let A_j be the set of possible values $a_{r+1,j}$, that is let $A_j = \{k : 1 \le k \le n, k \ne a_{ij}\}$. Check that $\{A_j : 1 \le j \le n\}$ has a set of distinct representatives.] Prove that there are at least $n!(n-1)!\cdots(n-r+1)!$ distinct r+n Latin rectangles based on 1, 2, ..., n.

3. Let A be an $r \times s$ Latin rectangle based on 1, 2, ..., n and denote by A(i) the number of times the symbol i occurs in A. Show that A can be extended to an $n \times n$ Latin square if and only if $A(i) \ge r + s - n$ for every i = 1, 2, ..., n.

4. (Dual of Dilworth's Theorem) Let (P, \leq) be a partially ordered set such that every chain has at most k elements. Prove that P can be decomposed into k antichains.

5. Prove that the edge-chromatic number of a bipartite multigraph G is $\Delta(G)$.

6. A set $F \subseteq E(G)$ is called an *edge cover* if every vertex of G is incident with at least one edge in F. Let G be a bipartite graph with minimum degree at least one. Prove that the size of a maximum independent set is equal to the size of a minimum edge cover.

7. Let $k \ge 0$ be an integer, and let G be a graph. Prove that G has a matching saturating all but at most k vertices of G if and only if $o(G \setminus X) \le |X| + k$ for every $X \subseteq V(G)$.

8. Design a polynomial-time algorithm with the following specifications:

Input: A graph G and a matching M in G saturating all except exactly k vertices of G. Output: Either a matching in G of size at least |M| + 1, or a set $X \subseteq V(G)$ such that $o(G \setminus X) = |X| + k$ (in which case G has no matching of size |M| + 1 by the previous exercise).

Use your algorithm to design a polynomial-time algorithm to find a maximum matching in a graph.