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1 Homework 2

Find an explicit constant c and an algorithm to find a maximum independent set in a planar
graph in time O(2c

√
n), where n is the number of vertices of the graph. (You can use the material

from course website.) Due by 4/15/2009.

2 An application: approximating α(G) for planar graphs

We recall the Separator Theorem.

Theorem 2.1 For any planar graph G on n vertices, there exists a partition (A,B,C) of V (G)
such that

(i) |C| ≤ 2
√

2
√

n;

(ii) |A ∪ C|, |B ∪ C| > n
3 ;

(iii) there is no edge from A to B.

Lemma 2.2 Let G be a planar graph on n vertices, and let ε ∈ (0, 1). Then there is a set
X ⊂ V (G) of size O(

√

n
ε ) such that no component of G − X has more than εn vertices.

Proof. Let X := ∅. If some component H of G − X has no less than εn vertices, then apply
the Separator Theorem to H to get a partition (A,B,C) as in the theorem: |C| ≤

√
8n, |A| ≤

2
3 |V (H)|, |B| ≤ 2

3 |V (H)|. Set X := X ∪ C, repeat.
We classify the components arising from in the algorithm into levels: level 0 component is

one we will end up with; Level i component is one such that after applying the algorithm to it,
all resulting components are of level j ≤ i − 1, and at least one is of level exactly i − 1.

Each level i component has more than (3
2 )i−1εn vertices, for i ≥ 1. Then, the number of level

i components is no more than n
( 3

2
)i−1εn

= (2
3 )i−1/ε.

We may assume that ε ≥ 1
n ; otherwise, 1

ε ≥ n, and so
√

n
ε ≥ n, thus X = V (G) satisfies the

conclusion of lemma, because |X| = n = O(
√

n
ε ). Let there be k levels. Then, 1 ≤ (2

3 )k−1/ε ≤
(2
3 )k−1n, then (3

2 )k−1 ≤ n, then k ≤ log3/2 n + 1.
Fix level i, and let L1, L2, ..., Lt be the components of level i. Let nj = |V (Lj)|. How many

vertices get added to X at this level? Since n1 + n2 + ... + nt = Const ≤ n,

t
∑

j=1

√

8nj ≤
√

8t

√

n

t
≤

√
8nt ≤

√
8
√

n(
2

3
)(i−1)/2/

√
ε.

1



Thus, the total size of X is at most

O(

√

n

ε
)
∑

i≥1

(
2

3
)(i−1)/2 = O(

√

n

ε
).

Thus this proves the lemma.

Lemma 2.3 The set X can be found in time O(n log n), assuming a linear-time separator algo-
rithm.

Proof. Use the above algorithm. There are O(log n) levels, each take linear time.

Algorithm 1 (approximating α(G) for planar graphs): Pick ε := log n
n . We may find a set

X as in the Lemma in time O(n log n). For each component H of G − X, we find α(H) exactly
by looking at all subsets of V (H) in time O(2|V (H)|) = O(n). (So the running time is O(n2).)

Let I be the union of the maximum independent sets in H (over all components H of G−X),
and let Iopt be the maximum independent set in G. Then,

|Iopt| − |I|
|Iopt|

≤ |X|
|Iopt|

≤ n/
√

log n

n/5
= O(

1√
log n

).

Here, |Iopt| ≥ n
5 since any planar graph is 5-choosable. And the running time is O(n2).

Algorithm 2 (approximating α(G) for planar graphs): Pick ε := log log n
n . We may find

a set X as in the Lemma in time O(n log n). For each component H of G − X, we find α(H)
exactly by looking at all subsets of V (H) in time O(2|V (H)|) = O(log n).

Then,
|Iopt| − |I|

|Iopt|
≤ |X|

|Iopt|
≤ n/

√
log log n

n/5
= O(

1√
log log n

).

And the running time is O(n log n).

3 Matrix Decomposition

Considering
AX = b,

where A is a symmetric positive definite. Let G be the corresponding graph: i ∼ j ⇔ aij 6= 0, i 6=
j, V (G) = {1, ..., n}.

Assume that G is planar.
A can be wrote as A = LDLt, where L is lower-triangular, D is diagonal. Ly = b, DZ =

y, LtX = Z.

Objective is to reorder V (G) (rows and columns of A; replace A by PAP t for some permutation
matrix P ) to get the ”fill-in” under control (to minimize the number of ”fill-in”), where ”fill-in”
refers to non-zero entries of L with corresponding entry of A zero.

Theorem 3.1 If A is symmetric positive definite, G is a planar on n vertices, then there is a
permutation matrix P such that the number of the fill-in of the matrix PAP t is O(n log n).

Theorem 3.2 There is a permutation matrix P such that the factorization PAP t = LDLt re-
quires O(n3/2) multiplication.
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