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1 Homework 2

Find an explicit constant ¢ and an algorithm to find a maximum independent set in a planar
graph in time 0(20\/5), where n is the number of vertices of the graph. (You can use the material
from course website.) Due by 4/15/2009.

2 An application: approximating «(G) for planar graphs

We recall the Separator Theorem.

Theorem 2.1 For any planar graph G on n vertices, there exists a partition (A, B,C) of V(Q)
such that

(i) |C] < 22y;
(i) |AUC|,|BUC| > %;
(iii) there is no edge from A to B.

Lemma 2.2 Let G be a planar graph on n vertices, and let ¢ € (0,1). Then there is a set
X C V(G) of size O(\/Z) such that no component of G — X has more than en vertices.

Proof. Let X := (). If some component H of G — X has no less than en vertices, then apply
the Separator Theorem to H to get a partition (A4, B,C) as in the theorem: |C| < v/8n,|A| <
2|V (H)|,|B| < 2|V (H)|. Set X := X UC, repeat.

We classify the components arising from in the algorithm into levels: level 0 component is
one we will end up with; Level ¢ component is one such that after applying the algorithm to it,
all resulting components are of level j < i — 1, and at least one is of level exactly i — 1.

Each level ¢ component has more than (%)i_lsn vertices, for ¢ > 1. Then, the number of level
) . _ (2Yi-1
¢ components is no more than (%)[jlm = (3)2 /€.

We may assume that ¢ > %; otherwise, % > n, and so \/§ > n, thus X = V(G) satisfies the
conclusion of lemma, because |X| =n = O(y/Z). Let there be k levels. Then, 1 < (%)k_l/s <
(3)k=!n, then (3)*=! < n, then k < logg/an + 1.

Fix level ¢, and let Ly, Lo, ..., Ly be the components of level i. Let n; = |V(L;)|. How many
vertices get added to X at this level? Since nq + no + ... + ny = Const < n,
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Thus, the total size of X is at most

Thus this proves the lemma. |

Lemma 2.3 The set X can be found in time O(nlogn), assuming a linear-time separator algo-
rithm.

Proof. Use the above algorithm. There are O(logn) levels, each take linear time. |

Algorithm 1 (approximating «(G) for planar graphs): Pick ¢ := 105". We may find a set

X as in the Lemma in time O(nlogn). For each component H of G — X, we find a(H) exactly

by looking at all subsets of V/(H) in time O(2!V) = O(n). (So the running time is O(n?).)
Let I be the union of the maximum independent sets in H (over all components H of G — X),

and let I,,; be the maximum independent set in G. Then,

[ Zopt| [ Lopt| n/5 Vviogn

Here, |Iop¢| > ¢ since any planar graph is 5-choosable. And the running time is O(n?).

Algorithm 2 (approximating «(G) for planar graphs): Pick ¢ := logl%. We may find
a set X as in the Lemma in time O(nlogn). For each component H of G — X, we find a(H)
exactly by looking at all subsets of V (H) in time O(2/V)) = O(logn).

Then,
[ Lopt| — || - | X| - n/+/loglogn _ o 1
Hopt| = opt| — n/5 Vloglogn

And the running time is O(nlogn).

).

3 Matrix Decomposition

Considering
AX = b,

where A is a symmetric positive definite. Let G' be the corresponding graph: i ~ j < a;; # 0,1 #
LV(G)={1,...,n}.

Assume that G is planar.

A can be wrote as A = LDL!, where L is lower-triangular, D is diagonal. Ly = b, DZ =
7, L'X =Z.

Objective is to reorder V (G) (rows and columns of A; replace A by PAP! for some permutation
matrix P) to get the "fill-in” under control (to minimize the number of ”fill-in”), where ”fill-in”
refers to non-zero entries of L with corresponding entry of A zero.

Theorem 3.1 If A is symmetric positive definite, G is a planar on n wvertices, then there is a
permutation matriz P such that the number of the fill-in of the matriz PAP! is O(nlogn).

Theorem 3.2 There is a permutation matriz P such that the factorization PAP' = LDL! re-
quires O(n3/?) multiplication.



