Minimum Weight Matchings
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1 Review

1.1 Definition: LP-duality
min{cz : Ar = b,x > 0} = max{by : yA = ¢}

1.2 Definition: Complementary Slackness

If ,y satisfy Az = b,x > 0,yA < ¢ and (yA); < ¢; = x; = 0 then z,y are
optima.

2 Problem

Given a graph G(V, E) with weights c. assigned to each edge e € E which has
a perfect matching, find a perfect matching of minimum weight.

2.1 Integer Programming Formulation

mianece
s.t. (6(v)) = 1Vv € V, and
ze €{0,1}Ve e E

where 2(6(v)) is defined as 3.5, e and §(v) is the set of edges incident to v.

2.2 Linear Program Relaxation

min E TeCe

e€E(G)
s.t. z(6(v)) = Vo € V(G), and
z. > Ve € E(G)



2.3 LP dual

max Z Yy, Where
veV(G)

Yu + Yo < c.Vuv € E(G)

3 Hungarian Method

This algorithm, attributed to Kuhn or Jacobi, finds a minimum weight perfect
matching for all bipartite graphs, and, more generally, all graphs not containing
blossoms. The basic idea is to find a perfect matching M and a vector y s.t. we
get equality for  =(the characteristic vector of M) and y. We start with some
matching M, for instance M = @&, and some vector y, for instance y = —ooVv €

V.

3.1 Equality Edges and Equality Graph

e =uv € F is an equality edge if y,, + y, = c.. We want the number of equality
edges to be non-decreasing. We want M to be a matching in the equality
graph (to satisfy complementary slackness). How? First, we try to find an M-
augmenting path in the equality graph. If we succeed, it means we can make
a bigger matching. If there isn’t one, we try to increase y to acquire a new
equality edge. Doing this means we make progress by increasing the size of the
equality graph. The following lemma means we can always do one or the other.

Lemma 1. If G is bipartite (and contains no blossoms), and there is no M-
augmenting path in the equality graph, then y can be increased so that a new
edge becomes an equality edge.

Proof. We may assume that every vertex is incident to an edge in the equality
graph (for if any vertex is not, we increase its y until one of its incident edges
is equality). We may also assume there is an unsaturated vertex r (or else no
larger matching is possible). Take a maximal M-alternating tree in the equality
graph rooted at r.

Now we want to increase y by some amount at vertices in B(T) (those at
even distance from r) and decrease it by same amount at vertices in A(T) (those
at odd distance from r. There is an edge in the graph that goes from a vertex
in B(T) to an edge not in T, because we assumed there was a perfect matching
and no blossoms. We choose the amount to add and substract so that such an
edge becomes an equality edge. O



4 Minimum weight matching for non-bipartite
graphs

4.1 New LP relaxation

If G is non-bipartite (and blossoms exist), the LP relaxation can be rewritten

as:
min E TeCe

¢€E(G)
s.t.z(0(v)) = Vv € V(G),
z. > 0Ve € E(G)
X(C) > 1V odd cuts C.

An odd cut is a cut of the form §(X), where X contains an odd number of
vertices.

4.2 New LP dual

max Z Yo + z Ye, Where

veV(G) C€odd cuts

Yu + Yo + Z Yo < c.Ve = uv € E(G), and
C>e
yco >= 0V odd cuts C.

5 Method

Start with a perfect matching in equality graph. Let y, = —oo and yo = OV, C.
Apply the same strategy as in the Hungarian Method.

5.1 Handling Blossoms

Whenever a blossom B is encountered, construct E(B) and modify ¢ for edges
in d(V(B)) (edges leaving V(B)) in the following way:
If vw € E(G),v € V(B), w ¢ V(B) define

/
e

Chw = Cow —Yp vw € E(G),v e V(B),w ¢ V(B)
cl = ce 0.W.
All parallel edges are retained after contraction.
As for the ys, y/, := 0 for the new contracted vertex, and no others change.
This creates a new graph G’ with M’ := M — E(B), ¢,y to which we apply
the algorithm recursively. We obtain a perfect matching M" and vector 3" s.t.



M" is a perfect matching in the equality graph w.r.t. ¢’ in G’. We construct
M and y in G as follows:

M is obvious (same as Edmonds).

yp =y "vVv € V(G') — {n}, or just the old y, otherwise.

yo =ynifC = o6(V(B)) or y/. otherwise.

5.2 Properties of cuts

All cuts with y nonzero form a laminar family, so there are a linear number of
nonzero ycs. (Only edges leaving blossoms are nonzero.)

6 Summary of algorithm

Start with M empty, y, = —00,y. = 0, and at least one equality edge incident
to every vertex. Find a maximal M-alternating tree in equality graph. If there
is a blossom, contract, apply recursively to a smaller graph. Obtain perfect
matching in the equality graph of G’ and use it to construct a perfect matching
in the equality graph of G. This is a minimum weight perfect matching. We may
assume no blossom. If there is an M-augmenting path, find a bigger matching.
Otherwise y can be increased to acquire an equality edge.

Theorem 1 (Edmonds). The convex hull of incidence vectors of perfect match-
ings of a graph G is given by

z(d(v)) = 1Vv € V(Q)

ze > OVe € E(G)
z(C) > 1V odd cuts C



