13. Lemma. Let T and S be sets of nodes of a matching-covered graph G such that $\nabla(T)$ and $\nabla(S)$ are tight cuts and $|T \cap S|$ is odd. Then $\nabla(T \cap S)$ and $\nabla(T \cup S)$ are also tight cuts. Furthermore, no edge connects T - S to S - T.

5. THEOREM. The result of any two tight cut decomposition procedures I the same graph is the same list of bricks and braces.

Proof. We use induction on |V(G)|. Let us consider any two tight cut decomposition procedures and let \mathscr{F} and \mathscr{F}' be the two corresponding families of tight cuts.

Case 1. \mathcal{F} and \mathcal{F}' have a common member C. Then we can start both \mathcal{F} and \mathcal{F}' with breaking along this cut C. This results in the same two graphs G_1 and G_2 in both cases, and so both decompositions produce the union of the result of a tight cut decomposition of G_1 and one of G_2 . Since by the induction hypothesis these lists depend on G_1 and G_2 only, this proves the assertion.

Case 2. There are cuts $C \in \mathcal{F}$ and $C' \in \mathcal{F}'$ which are laminar. Let \mathcal{F}'' be any maximal set of mutually laminar non-trivial tight cuts containing C and C'. Then by case 1, the decomposition procedures associated with \mathcal{F} and \mathcal{F}'' , end up with and \mathcal{F}'' , as well as the procedures associated with \mathcal{F}' and \mathcal{F}'' , end up with

the same lists of bricks and braces. Hence \mathcal{F} and \mathcal{F}' end up with the same lists.

Case 3. There are cuts $C = \nabla(T) \in \mathscr{F}$ and $C' = \nabla(T') \in \mathscr{F}'$ such that $|T \cap T'|$ is odd and at least 3. Then Lemma 1.3 shows that $C'' = \nabla(T \cap T)$ is also a tight cut, which is clearly non-trivial. Let \mathscr{F}'' be a maximal family of mutually laminar non-trivial tight cuts containing C''. Then C'' is laminar with C, and hence the decompositions associated with \mathscr{F} and \mathscr{F}'' result in the same list of bricks and braces, and similarly for \mathscr{F}' and \mathscr{F}'' . This proves the assertion.

To complete the proof, consider any $C \in \mathcal{F}$ and $C' \in \mathcal{F}'$. If they are laminar, we are done by case 2, so assume that they are not laminar. Choose shores T of C and T' of C' such that $|T \cap T'|$ is odd (this is clearly possible). If $T \cap T'$ is not a singleton, then we are done by case 3, so assume that $T \cap T' = \{u\}$ for some node u. If V(G) - T - T' is not a singleton, then again we can apply case 3 by replacing T and T' by their complements. So assume that $V(G) - T - T' = \{v\}$ for some node v.

Now the pair $\{u, v\}$ separates the graph; more exactly, no edge connects T-T' to T'-T, by Lemma 1.3. Hence C and C' are two 2-separation cuts defined by the same separating pair of nodes. If $\mathscr{F}=\{C\}$ and $\mathscr{F}'=\{C'\}$ then it is obvious that breaking G along C and along C' results in isomorphic graphs (after deleting multiple edges), and we are done So assume that, e.g., \mathscr{F} contains another cut $C_0=\nabla(S)$. Then C_0 is laminar with C, and so we may assume without loss of generality that $S\cap T=\emptyset$. If C_0 is laminar with C' then we are again finished by case 2, so assume that this does not happen. Then S is not a subset of T' and hence we must have $v\in S$ and so $|S\cap (V(G)-T')|=1$. Hence trivially $|(V(G)-S)\cap T'|=|T'-S|\neq 1$, as $C_0\neq C$.