10. PLANAR GRAPHS CONTINUED

10A. SEPARATORS

A1l. Exercise. Prove that for every tree T on n vertices there exists a separation (77, 75%) of T of

order at most one such that [V (13)], |V (T2)| > 3 n.

A2. Exercise. Prove that for every series—parallel graph G on n vertices there exists a separation
(G1,G2) of G of order at most two such that [V (G1)|,|V(G2)| > 3 n.

A3. Definition. A planar drawing I' is a triangulation if every face of I' is bounded by a circuit
of length three. A near-triangulation is a planar drawing such that every face, except possibly the

unbounded one, is bounded by a circuit of length three.

A4. Lemma. Let I' be a simple near-triangulation with the unbounded face bounded by a circuit
C. Let u and v be two distinct vertices of C', let P; and P, be the two subpaths of C with ends u
and v and union C, and let S be a set of vertices of I' with u,v € S. Then either there exists a
path P in I" with ends u and v satisfying V(P) C S, or there exists a path Q in I between V (P;)
and V(Py) with V(Q)N S = 0.
Proof. We proceed by induction on V(I'). We may assume that P; does not satisfy the conclusion
of the lemma, and hence there exists a vertex w € V(P;) — S. First let us assume that some vertex
w' € V(C) is adjacent to w in I', but not in C. Then I' has a 2-separation (I';,I's) such that
V() NV(Ty) = {w,w'}, V(I'1) = V(T2) # 0 and V(') — V(T'y) # 0. If w' € V(P;), then one
of I'y, 'y contains Py, say I's. The lemma then follows from the induction hypothesis applied to
I's. Thus we may assume that w’ ¢ V(P;). We may also assume that w’ € S, for otherwise the
path with vertex-set {w,w’} satisfies the conclusion of the lemma. Finally, we may assume that
the notation is chosen so that w € V(I';) and v € V(I'). We apply the induction hypothesis to
the triples I'1, u,w’ and I's, v, w’. The lemma follows by suitably combining the resulting paths.
We have thus shown that if C' has a vertex w’ as above, then the lemma holds. We may
therefore assume that no such vertex exists. Since I' is a simple near-triangulation, the neighbors
of w induce a path R in I". By the nonexistence of a vertex w’ as above we deduce that R is disjoint
from C, except for its ends. Let IV = I'\w; then I is a near-triangulation with the unbounded
region bounded by the circuit RUC\w. The lemma now follows easily from the induction hypothesis
applied to I". O
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10A. SEPARATORS

A5. Lemma. Let I' be a near-triangulation with the infinite face bounded by a circuit C'. Let
the vertices of C' be vg,v1,...,v4 = vy (in order), let i be an integer with 0 < i < t, and let k
be a positive integer. Then either I' has k pairwise disjoint paths between {vg,v1,...,v;} and
{vi,Vit1,...,v¢}, or there exists a path P in I' between vy and v; with |V (P)| < k.

Proof. By Menger’s theorem there either exist the k disjoint paths as in the statement of the lemma,
or there exists a set S C V(I') such that |S| < k and there is no path between {vg,vq,...,v;} and
{Vi;Vigx1,...,v:} in T\S. By 10A4 there exists a path P between vy and v; with V(P) C S. Thus
|[V(P)| < k, as desired. m|

A6. Theorem. (Lipton, Tarjan [5]) For every planar graph on n vertices there exists a separation
(G1,Gs) of G of order at most 2v/2\/n such that |V (G1)|, |V (G2)| > i n.
Proof. We follow [2]. We may assume that G is a planar drawing, that it has no loops or multiple
edges, that n > 3 and (by adding new edges to G) that G is a triangulation. Let k = |v/2n]. For
any circuit C' of G we denote by A(C) and B(C) the sets of vertices drawn inside C' and outside
C, respectively; thus (A(C), B(C),V(C)) is a partition of V(G), and no vertex in A(C) is adjacent
to any in B(C'). Choose a circuit C' of G such that

(i) [V(C)] <2k

(i) [B(C)| < 2n
(iii) subject to (i) and (ii), |A(C)| — |B(C)| is minimum.
This is possible, because the circuit bounding the infinite region satisfies (i) and (ii). Let Gy be
the subgraph of G induced by A(C)U C, and let G5 be the subgraph of G induced by B(C) U C.
We claim that (G, G2) satisfies the conclusion of the theorem. We suppose, for a contradiction,
that that is not the case; then |A(C)| > 2 n. Let D be the subgraph of G’ drawn in the closed disc
bounded by C. For u,v € V(C), let c¢(u,v) (respectively, d(u,v)) be the number of edges in the
shortest path of C' (respectively, D) between u and v.

(1) c(u,v) =d(u,v) for all u,v € V(C).

For certainly d(u,v) < ¢(u,v) since C is a subgraph of D. If possible, choose a pair u,v € V(C)
with d(u,v) minimum such that d(u,v) < c¢(u,v). Let P be a path of D between u and v, with
d(u,v) edges. Suppose that some internal vertex w of P belongs to V(C). Then

d(u,w) + d(w,v) = d(u,v) < c(u,v) < c(u,w) + c(w,v)

and so either d(u,w) < c(u,w) or d(w,v) < c¢(w,v), in either case contrary to the choice of u,v.
Thus there is no such w. Let C,C1,C5 be the three circuits of C' U P where |A(C1)| > |A(C2)].
Now |B(C1)| < 2n, since

n = 1B(C)| = [A(CY)] + [V(C)] > 3 ([A(C))] + ACo)| + [V(P)] - 2) = 2 [A(C)] 2 5 n.
But |[V(Cy)| < |V(C)] since |E(P)| < c(u,v), and so C satisfies (i) and (ii). By (iii), B(C}) =
B(C), and in particular ¢(u,v) < 1, which is impossible since d(u,v) < ¢(u,v). This proves (1).
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10A. SEPARATORS
(2) V(O =2k

For suppose that |V (C)| < 2k. Choose e € E(C), and let P be the two-edge path of D such
that the union of P and e forms a circuit bounding a region inside of C. Let v be the middle vertex
of P, and let P’ be the path C\e. Now P # P’ since A(C) # 0, and so v € V(C) by (1). Hence
P U P’ is a circuit satisfying (i) and (ii), contrary to (iii). This proves (2).

Let the vertices of C be vg,v1,...,va5_1, V2 = Vg, in order.
(3) There are k + 1 vertex-disjoint paths of D between {vg,v1,...,v;} and {vg, Vks1, ..., V2K }-

Indeed, otherwise, by the previous lemma, there is a path of D between vy and vy with less
than k vertices, contrary to (1). This proves (3).
Let the paths of (3) be Py, Py, ..., Py, where P; has ends v;,v9r_; (0 <i < k). By (1),

[V (F;)| > min(2i +1,2(k — 1) + 1)
and so

n=V(G)|> > min(2i+1,2(k—1d)+1) >

0<i<k

(k+1)2

DO | =

Yet k+1 > v/2n by the definition of k, a contradiction. Thus our assumption that [A(C)| > 2 n
was false, and so |A(C)| < 2n and (G1, G2) satisfies the theorem. m|

A7. Remark. Lipton and Tarjan [5] gave a linear time algorithm to find a separation as in 10A6.

The proof we presented gives a quadratic algorithm.

A8. Remark. It is not known what is the best constant ¢ that can replace 2v/2 in 10A6. It is

known [2, 4] that 1.555 = /473 < ¢ < 3/2.

A9. Remark. There are several applications of 10A6 [6, 7]. Here is one. Notice that planarity is

only used to find a separation as in 10A6.

A10. Proposition. There exists an algorithm that finds the size of a maximum independent set
of a planar graph on n vertices in time 20(vV1),

Proof. Let G be a planar graph, and let ' C Z C V(G). We denote by (G, Z, F) the size of
the maximum independent set I in G such that I N Z = F. For a separation (A, B) of G let
C =V(A)NV(B); then

a(G,Z,F) =max{a(A,ZUC,FUX)+a(B,ZUC,FUX) — |X| - |FNC|},

where the maximum is taken over all sets X C V(A)NV(B) — Z. Using this formula and 10A6
recursively gives an algorithm to compute o(G, Z, F'), whose worst case running time f(n) satisfies

the recursion
f(n) < O(nQ) + 20(vn) max(f(n1) + f(n2)),
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10A. SEPARATORS

where the maximum is taken over all integers ny,ny with ni,no > %n and nq +ne < n+ 2\/5\/5
It follows that f(n) = 20(v7), O

A11. Remark. Our next objective is to prove a separator theorem for graphs with an excluded

minor. Recall that X-flaps and havens are defined in the tree-width chapter.

A12. Lemma. [1] Let G be a graph with n vertices, let Ay,..., Ay C V(G), and let r be a real
number with r > 1. Then either
(i) there is a tree T in G with |V (T)| < r such that V(T)NA; #0 fori =1,...,k, or

(ii) there exists Z C V(G) with |Z| < (k—1)n/r, such that no Z-flap intersects all of Ay, ..., Ag.
Proof. We may assume that & > 2. Let G*,...,G*~! be isomorphic copies of G, mutually disjoint.
For each v € V(G) and 1 <i < k—1, let v* be the corresponding vertex of G*. Let J be the graph
obtained from G'U---UG*~! by adding, for 2 <i < k—1 and all v € A;, an edge joining v*~! and
v Let X = {v':ve€ A} and Y = {vF! v € A}, For each u € V(J), let d(u) be the number
of vertices in the shortest path of J between X and u (or oo if there is no such path). There are
two cases:

Case 1. d(u) < r for some u € Y.

Let P be a path of J between X and Y with < r vertices. Let

S ={veV(G):v' € V(P) for some i with 1 <4 <k — 1}.

Then |S| < |[V(P)| < r, the subgraph of G induced on S is connected, and |S N A;| # 0 for
1 <4 < k. Thus (i) holds.
Case 2. d(u) >rforallueY.

Let ¢ be the least integer with ¢t > r. For 1 < j <t , let Z; = {u € V(J) : d(u) = j}. Since
[V(J)| = (k—1)n and Z1,...,Z; are mutually disjoint, one of them, say Z;, has cardinality at
most (k—1)n/t < (k—1)n/r. Now every path of J between X and Y has a vertex in Z;, because
d(u) > j for all u € Y. Let

Z={veV(G):v' € Z; for some i with 1 <i < k — 1}.

Then |Z| < |Z;| < (k—1)n/r, and we claim that Z satisfies (ii). Suppose that F' is a Z-flap of G
which intersects all of Ay,..., Ag. Let a; € FNA; (1<i<k),andfor 1 <i<k—1let P, bea
path of G with V(P;) C F and with ends a;,a;;1. Let P? be the path of G* corresponding to P;.
Then V(PY)U--- U V(P*~!) includes the vertex set of a path of J between X and Y, and yet is

disjoint from Z;, a contradiction. Thus, there is no such F', and so (ii) holds. O

A13. Open problem. Can the bound (k — 1)n/r in the lemma be improved to o(k)n/r? That

would imply a corresponding improvement in 10A16 below.
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A14. Definition. A cluster in a graph G is a set C of vertex-disjoint trees in G such that for
every two distinct members T, 7" € C there exists an edge of G with one end in V(T") and the other
end in V(7T”). Thus if G has a cluster of cardinality h, then G has a Kj-minor.

A15. Theorem. [1] Let h > 1 be an integer and let G be a graph with n vertices and with a
haven of order h3/?2n'/2 + 1. Then G has a K},-minor.
Proof. Let 3 be a haven in G of order h3/2n'/2 4+ 1. Choose X C V(G) and a cluster C with |C| < h
such that

(i) X cUWV(C):Ceq),

(ii) | X NV(C)| < h'/?n!/? for each C € C,
(i) V(C)N B(X) =0 for each C € C, and
(iv) subject to (i), (ii), and (iii), |C| + |X| + 3|5(X)]| is minimum.
This is possible, because setting C = X = () satisfies (i), (ii), and (iii). Let C = {C1,...,Ci}. We
suppose for a contradiction that k < h. For 1 <1i < k, let A; be the set of all v € §(X) adjacent
in G to a vertex of C;. Let G’ be the restriction of G to 5(X). By 10A12 applied to G’ with
r = h'/2n'/2 one of the following cases holds:
Case 1. There is a tree T of G’ with |V (T)| < h'/?n'/2, such that V(T) N A; # ) for 1 <i < k.
Let (' =CU{T} and X' = X UV (T); then C’ is a cluster and for each C' € C’,

V(C)nBX") S V(C)n (B(X) = V(T)) = 0.

This contradicts (iv).
Case 2. There exists Z C B(X) with |Z| < (k — 1)|8(X)|/h'/?n'/? < h'/?n!/? such that no Z-flap
of G’ intersects all of Ay,..., Ax. Let Y = X U Z. Since k < h — 1, it follows that |Y| < h3/2p1/2,
and so (Y) exists and 3(Y) C B(X). Since B(Y) is a Z-flap of G’ there exists ¢ with 1 < < k
such that 3(Y) N A; = (. Extend C; to a maximal tree C/ of G disjoint from 3(Y) and from each
C; (j#14). Let Z/ =V(C))NZ,let X' =Z'U(X =V (C;)), and let W = V(C;) U (V(G) — B(X)).
We claim that 8(X’) N W = (). For suppose not. Since 3(Y) C 3(X’), there is a path of G
between W and (Y) contained within (X’) and hence disjoint from X’. Since W N 3(Y) = 0,
there are two consecutive vertices u, v of this path with w € W and v € V(G) — W C (X). Since
u,v are adjacent it follows that v € X U §(X), and so

we (X UBX) N (W - X') C V(CY).

Since v ¢ W it follows from the maximality of C/ that v € 5(Y). Since u ¢ B(Y) we deduce that
u €Y, and so
weY N(V(C) —X" CV(C).

But then v € A;, which is impossible since A;NG3(Y") = (). This proves our claim that (X" )NW = 0.
Hence, 8(X’) C B(X). Let ¢’ = (C — {C;}) U{C!}; then C’ is a cluster. We observe that
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10B. CHARACTERIZATIONS OF PLANARITY

(i) X' CYv(C):Ccedl); for 2/ CV(C),
(i) | X' NV(C)| < hY?n'/2 for each C € C'; for if C # C! then X' NV (C) = X N V(C), and
X'NnV(Cl) =27, and
(iii) V(C)N B(X') =0 for each C =C’'; for B(X') N W = (), as we have seen.
By (iv),
€]+ 1X7| 4+ 3B(X")] > [€] + X + 3|5(X)|

But |C'| =|C| and X' UB(X') C (X UB(X))—(XNV(C)), and so X NV (C;) = 0. Then C—{C;},
X satisty (i), (ii), and (iii), contrary to (iv).
In both cases, therefore, we have obtained a contradiction. Thus our assumption that k& < h

was incorrect, and so k = h and G has a Kj-minor, as required. O

A16. Theorem. [1] Let h be an integer, and let G be a graph on n vertices with no Kj-minor.
Then G has a separation (G1,G3) of order at most h3/?>n'/? such that |V (G1)|,|V(G2)| > n/3.

Proof. Suppose that G does not have a separation as stated in the theorem. Then for every set
X C V(G) with |X| < h3/2n'/2 some component of G\ X has more than n/2 vertices (exercise).
Define 5(X) to be that component. Then [ is a haven of order h3/2pn'/2 41, and hence the theorem
follows from 10A15. O

A17. Open problem. Can the bound h3/2n'/2 be improved to O(hn'/?)? That would be best

possible up to a constant factor. See also 10A13.

A18. Remark. Bui, Fukuyama and Jones [3] have shown that that it is NP-hard to determine,
given a planar graph G, the smallest integer k such that G has a separation (G1,G3) of order k
satisfying |V (G1)|, |V (G2)| > |[V(G)]/3.

10B. CHARACTERIZATIONS OF PLANARITY

B1. Exercise. If GG is a planar graph, then the following are equivalent:
(i) G is a block not isomorphic to Ky, K;, or Ko,
(ii) there exists a planar drawing of G such that every face is bounded by a circuit,

(iii) in every planar drawing of G, every face is bounded by a circuit.

B2. Definition. A graph G’ is called an abstract dual of a graph G if M(G’) is isomorphic to
M*(G).

B3. Exercise. Find a graph G such that some graph is an abstract dual of GG, but not a geometric
dual.
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