

Havens and Tree Width

Scribe: Rishi Saket, March 14, 2005

In the previous lecture we defined a haven of order k. In this lecture we will prove a relationship between the order of a haven and tree width of the graph.

A **haven of order** k is a map $\beta : [V(G)]^k \rightarrow 2^V(G)$, such that $\beta(X)$ is the vertex set of a component of $G \setminus X$. Also, $X \subseteq Y \Rightarrow \beta(X) \supseteq \beta(Y)$.

Theorem 0.1 $\text{tw}(G) \leq k \iff G$ has no haven of order $k + 1$.

Proof: We will only prove the forward implication which is easy to see. We know as a fact from the previous lecture that a haven of order $k + 1$ gives an escape strategy for the robber against k cops. Also, if the tree width is at most k, then no such escape strategy exists for k cops. \[\Box\]

The reverse implication is harder to prove and instead we will prove a weaker statement.

Theorem 0.2 If $\text{tw}(G) \geq 3k - 1$, then G has a haven of order k.

Proof: Let (T, W) be a tree decomposition of G such that,

1. $|W_t| \leq 3k - 1$, $\forall t \in V(T)$ of degree > 1.

2. $|W_t \cap W_{t'}| \leq 2k - 1$, $\forall \{t, t'\} \in E(T)$.

3. Number of vertices of G that only belong to W_t with $|W_t| \geq 3k$ is minimized.

Clearly such tree decomposition exists since we can construct a trivial single edge tree with one vertex containing all the vertices, and it satisfies [1] and [2].

We know that the tree width of (T, W) is at least $3k - 1$. This means that there is a leaf $t \in V(T)$ with $|W_t| \geq 3k$. Let t' be the unique neighbor of t in T. From our construction we know $|W_t \cap W_{t'}| \leq 2k - 1$.

Let $H := G[W_t]$, that is, H is the subgraph induced by W_t. Now suppose that there exists a $Z \subseteq V(H)$ with $|Z| < k$ such that $|V(J) \cap W_t \cap W_{t'}| < k$, \forall components J of $H \setminus Z$.

1
Let T' be obtained from T, by adding new leaf vertices t_J for every component J of $H \setminus Z$, all adjacent to t. Define the bags W'_r for T' as follows,

$$W'_r := \begin{cases} W_r & \text{if } r \in V(T) - t \\ (W_t \cap W'_r) \cup Z & \text{if } r = t \\ V(J) \cup Z & \text{if } r = t_J \text{ for } J \in \text{comp}(H \setminus Z) \end{cases} \tag{1}$$

Using the fact that $|W_t \cap W'_r| \leq 2k - 1$, $|Z| < k$ and $|V(J) \cap W_t \cap W'_r| < k, \forall J \in \text{comp}(H \setminus Z)$, we get that $|W'_r| \leq 3k - 2$ and $|W'_r \cap W'_r| \leq 2k - 2$, $\forall J \in \text{comp}(H \setminus Z)$. In both cases we have a slack since we are allowed upto $3k - 1$ and $2k - 1$ instead of $3k - 2$ and $2k - 2$ respectively from [1] and [2]. Therefore, Y can be chosen such that $Y - (W_t \cap W'_r) \neq \phi$. This will lead to a contradiction to [3], since the number of vertices of G that only belong to bags of width at least $3k$ is decreased by $|Y - (W_t \cap W'_r)|$.

So we may assume that no such Z exists. Thus $\forall Z \subseteq V(H)$, with $|Z| < k$, some component J of $H \setminus Z$, satisfies $|V(J) \cap W_t \cap W'_r| \geq k$. Define $\beta(Z) := V(J)$. We claim that β is a haven of H of order k. For this we must check that if $Z \subseteq Z' \subseteq [V(H)]^{<k}$, then $\beta(Z) \supseteq \beta(Z') \in V(J)$. If not, then $\beta(Z) \cap \beta(Z') = \phi$. But we have $|\beta(Z) \cap W_t \cap W'_r| \geq k$ and $|\beta(Z') \cap W_t \cap W'_r| \geq k$, which is a contradiction to $|W_t \cap W'_r| \leq 2k - 1$. Therefore, H has a haven of order k, and since H is a subraph of G, G has a haven of order k.

Example. A K_t minor in G gives rise to a haven of order t.

Proof. Since G has a K_t minor, it has disjoint connected subgraphs J_1, J_2, \ldots, J_t such that $\forall 1 \leq i < j \leq t$, there is a $J_i - J_j$ edge. Let $X \in [V(G)]^{<t}$, define $\beta(X)$ to be the component of $G \setminus X$ that includes some J_i, since there is at least one J_i such that $J_i \cap X = \phi$. This is well defined because there cannot be two components of $G \setminus X$ one containing J_i and the other containing J_j, since there is a $J_i - J_j$ edge.

Example. A $t \times t$ grid minor also defines a haven of order t.

No Proof.
Definition. Let \(\beta \) be a haven of order \(k \) in a graph \(G \). We say that a set \(X \in [V(G)]^k \) is free if there is no set \(Y \subseteq X \cup \beta(X) \) with \(|Y| < |X| \) such that \(\beta(Y) \subseteq \beta(X) \).

Lemma 0.3 Let \(\beta \) be a haven of order \(k \) in a graph \(G \), and let \(X \subseteq V(G) \) be a free set. Then, for every two disjoint sets \(A, B \subseteq X \), with \(|A| = |B| \), there exists \(|A| \) disjoint \(A - B \) paths in \(H := G[A \cup B \cup \beta(X)] \).

Proof. Suppose not; then \(\exists Z \subseteq V(H) \), such that \(|Z| < |A| \), such that no component of \(H \setminus Z \) intersects both \(A \) and \(B \) (Menger’s Theorem). Notice that \(\beta(X \cup Z) \) is well defined and is a subset of \(\beta(X) \). By the definition of \(Z \), \(\beta(X \cup Z) \) has no neighbor in one of \(A \) or \(B \), say in \(B \). But that means that \(\beta(X \cup Z) = \beta(X \cup Z - B) \subseteq \beta(X) \). Since \((X \cup Z - B) \subseteq X \cup \beta(X) \) and \(|X \cup Z - B| < |X| \), this is a contradiction to the freedom of \(X \).

Lemma 0.4 Let \(\beta \) be a haven of order \(k \). Then \(\forall t < k \), there exists a free set of size \(t \).

Proof. Let \(X \in V(G) \) such that,

a. \(|X| = t \).

b. subject to a. \(\beta(X) \) is minimal.

Now, \(X \) is a free set. Suppose not, then there is a set \(Y \subseteq X \cup \beta(X) \), such that \(|Y| < |X| \) and \(\beta(Y) \subseteq \beta(X) \). Now, if we add a vertex to \(Y \) from \(\beta(Y) \), we get a set \(X' \) such that \(|X'| \leq |X| \) and \(\beta(X') \subseteq \beta(X) \), and by choosing an appropriate superset of \(X' \), we get a contradiction to the minimality of \(\beta(X) \).